Epigenetics: How Our Lifestyle Can Impact Our Genes

[Author’s Note: This was a hard topic to tackle. Research in the field of epigenetics is brand new and most studies are done at the cellular level, rather than as applied research. My hope in writing this article is to provoke thought that there is much to exercise than what we see on the surface. Exercise is possibly the most powerful drug that we have at our disposal and it has the potential to greatly impact our lives. Keep running!]

Deoxyribonucleic acid, or DNA, is a double strand helix molecule that contains the genetic instructions that make up an individual. Each person has a unique genetic code that makes them who they are. DNA can be thought of like a blueprint for a living organism containing the instructions for building the organism. Segments of DNA grouped together, called genes, code for a particular protein within the organisms. Genes are expressed through the processes of transcription and translation, where the genes are first copied and then synthesized into a protein, respectively.

Our DNA determines much than just our physical appearance. It also determines how we function as an organism, including health and susceptibility to disease. We are each born with a unique genetic code, which will ultimately determine the expression of our inherited traits. We can’t change our genes… or can we?

The study of epigenetics examines how genetic modifications can change gene expression. These modifications resulting in gene expression are accomplished without altering the DNA sequence. How is that possible? Well, as the genetic code is copied (transcribed), epigenetic modifiers can bind to the DNA sequence to ‘change’ the code. This modification often occurs through methylation, a process in which methyl groups bind and ‘block’ any genes in that stretch of DNA. (See Figure 1.) The result is that genes in that sequence will are switched ‘off’ or not expressed. Thus, epigenetic modifiers have the ability to alter gene activity simply by blocking or not blocking the genetic code as it’s being copied.


Figure 1. Inactivation of a gene by DNA methylation.
Source: National Cancer Center Research Institute, 2010.

So, what does that mean? In plain English it means that our genes are not set in stone. Not all genes are active at all times. As you can imagine, epigenetics is a growing area of interest because of the potential implications for health. Recent studies have shown that not only do epigenetics influence your genes, but also can be passed down from one generation to the next. For example, eating too much may cause obesity but can also predispose your kids to be obese, even before they are conceived.

And so, what does this have to do with exercise? Well, lifestyle factors such as nutrition and exercise have been associated with methylation of specific genes leading to various health outcomes. The expression of specific genes is not just determined by our DNA, but also by our lifestyle. This goes back to the age-old debate of nature versus nurture. Are we the way we are because of our genetics or because of lifestyle? The lifestyle we lead may affect us more than we know. For better or worse, our bodies adapt to the environment they are placed in.

Exercise and Health

The importance of exercise for health has been well established. We know that exercise lowers risk for chronic diseases and also helps maintain energy balance for weight management. However, this seems to be just the tip of the iceberg. Recent studies have also linked exercise to methylation of specific genes related to risk factors for chronic disease. For example, exercise has been associated with methylation of genes responsible for the secretion of pro-inflammatory cytokines, which are the leading cause of chronic inflammation. Methylation, or blocking, these pro-inflammatory genes reduces the risk for cancer (Zhang et al., 2011).

In terms of obesity, exercise can actually change the way fat is stored in the body. A recent study investigating a six-month exercise intervention on DNA methylation in previously sedentary men found altered response in adipose tissue. The methylation occurred in genes related to obesity and type 2 diabetes (TCF7L2 and KCNQ1), meaning these genes were silenced following the exercise intervention. The exercise intervention consisted of a weekly group-training program of one 60-minute spinning session and two 60-minute aerobics sessions per week. On average, the subjects attended 1.8 sessions/week (Ronn et al., 2013). The major finding from this study is that endurance exercise positively impacted fat storage and metabolism, lowering the risk for obesity and type 2 diabetes. These changes were present in those with and without family history of type 2 diabetes and obesity. In this case, nurture seems to trump nature.

The relationship between exercise and chronic disease is difficult to measure is human populations, but a link has been clearly established. Beside the recent epigenetic studies, empirical evidence observing lifestyle factors in disease-free populations have found regular exercise to be a common theme. In a study assessing the link between physical activity and risk of breast cancer, a cohort of 25,624 women were followed for 13.7 years. In this study, those with greater leisure-time physical activity were associated with a lowered risk of breast cancer (Thune et al., 1997).  Although we are far from fully understanding the dynamic influence of exercise, the importance of exercise for optimal health and avoidance of disease is becoming even more apparent.

You might be wondering how much exercise you need to gain these positive benefits. It’s great to have such positive results from daily exercise, but if it entails running hours each day, then it’s not very practical for the average person. The reality is that very little exercise is needed to cause these changes. A recent study investigating different levels of physical activity, 26 to 30 minutes/day versus less than 10 minutes/day, found that those who accrued more had more DNA methylation. Although this finding was not statistically significant, it suggests that more physical activity produces results in greater methylation and very little physical activity is needed to cause these changes (Zhang et al., 2011). Despite the lack of strong evidence, this study still shows the potential for exercise, in as little as 30 minutes/day, to positively influence epigenetic modifiers.

There are two major take-home messages from these studies: 1) endurance exercise not only improves health at the cellular level, but also is associated with methylation of genes, further lowering risk for chronic disease, and 2) the amount of exercise required for these changes is not astronomical. This may have huge implications for public-health recommendations. Not only is exercise important, but every little bit counts. Surely most people have time to set aside 30 minutes per day to exercise, especially knowing the potential health benefits established in studies like these. Many more studies are needed to fully understand the implication of exercise on epigenetics, however the association between exercise and positive epigenetic modifications is clear.

Exercise and Performance

Can these epigenetic changes as a result of exercise also impact performance? It appears that exercise can, indeed, promote changes that will benefit performance and not just lower risk factors for disease. A recent study looking at skeletal muscle found changes in DNA methylation before and after an acute bout of exercise. Post-exercise, fewer methyl groups were found on some of the genes involved in energy metabolism (PGC-1a, PPAR-õ, PDK4). Conversely, genes unrelated to energy metabolism remained methylated, or blocked (Barres et al., 2012). This means that, in response to a single exercise session, genes related to the breakdown of fuels for energy were expressed while the genes not involved in energy metabolism were blocked. Energy metabolism is an important part of performance and the more efficient a body is at converting foodstuff to energy, the better for performance. Demethylation of genes related to energy metabolism produces a favorable adaptation in the skeletal muscle, including increased fat and glucose metabolism, improving the potential work capacity of the skeletal muscle. An even more interesting finding from this study was that the changes in the skeletal muscle were intensity dependent, meaning the greater the intensity the greater the gene demethylation (Barres et al., 2012). Taken together, this clearly illustrates the stress-adaptation process of the body. The more stress, or exercise, placed on the body, the greater the adaptation.

Are these epigenetic changes permanent? If someone spends a couple months engaging in exercise training, will the positive epigenetic changes sustain long after the activity is ceased? Unfortunately, it doesn’t appear so. Epigenetic changes are a response to an environmental stress. Since DNA is not altered, when the environmental stress is removed, the DNA code will revert back to its natural state. Just as the body becomes de-trained when exercise is discontinued, epigenetic modifiers revert back to their original state without the influence of exercise. This does shed light on the age-old dilemma of ‘nature versus nurture,’ however. Although DNA determines the original programming, lifestyle appears to have a big influence on the genes expressed that make us who we are. We may be born with a set of genes, but what we do in our day-to-day lives can determine what genes are expressed.

Is There A Sports Gene?

There have been some recent reports that elite athletes may have a special gene, a sports gene, which allows them to reach a high level of fitness. This idea seems to explain why some people can dedicate their whole lives to training and still only be mediocre while others seem to have a natural, innate ability. What makes elite athletes different? Is it their work ethic and dedication to the sport or are they born with something that predisposes them to be great? David Epstein explores this possibility in his book titled The Sports Gene. In his book, Epstein examines both genetic factors and lifestyle influences that may contribute to an athlete’s success.

In one instance, Epstein examines a Finnish cross-country skier named Eero Mäntyranta who has won seven Olympic medals in cross-country skiing (between 1960 and 1972). Mäntyranta has a genetic defect, primary familial and congenital polycythemia (PFCP), that causes increased red blood cell mass and hemoglobin. This mutation to the erythropoietin receptor (red blood cell) can increase the oxygen-carrying capacity of the blood by up to 50%. In endurance sports, this is a huge advantage as one of the limiting factors is oxygen delivery to the working muscles. Mäntyranta’s genetic mutation produced the same effects in performance as blood doping. Mäntyranta’s success in skiing is easily attributed to his unique genetics, but that’s not the whole story. The other part of the story, Mäntyranta’s upbringing, also explains much of his success. As a child, Mäntyranta grew up in a poor household and was forced to ski an hour each way to school every day. It was in doing this trek that Mäntyranta realized he could be a successful skier and avoid a life of poverty. So which was more important for Mäntyranta’s success: nature or nurture? In his book, Epstein suggests that it’s both nature and nurture that make an athlete successful. You can’t separate one from another; they are both equally important is molding individuals into the kind of people they are (Epstein, 2013).

A review of current genetic factors in elite athletes has suggested that up to 66% of the variation of the athletes genetics are non-modifiable. Meaning, that over half of the genes that make elite athletes different are what they are born with, rather than as a result of their lifestyle (Eynon et al., 2011). This review also points out that genetic variants are complex, including gene-gene interactions, rare genes, or polymorphisms, which may also influence athletic performance. Just because we begin to understand one aspect of genetic influences doesn’t mean we understand the full picture. And with so much individuality it’s difficult to pinpoint a clear understanding of how genetic influences impact an athlete’s success.

As my college ski coach used to say, “There are many Olympians sitting on bar stools.” Indeed, there are probably many individuals who will never know their athletic potential because they’ve never trained hard. So, what really matters more? A drive to work harder than anyone else or a natural-born ability? I don’t think we really have an answer. It seems that someone who possesses both qualities would have the highest potential. In racing, however, it doesn’t always end with the best ‘on paper’ athlete crossing the finish line first. In fact, that’s why we race. People can do extraordinary things, despite adversity. This is also part of what drives our passion and excitement for sports, seeing someone come from behind or defy the odds to accomplish the impossible is inspiring. It gives us hope that maybe we can also be great. Maybe not having the natural-born ability inspires more passion and drive to work hard. Who would win a race between an athlete with natural-born ability or one with a fire inside? I don’t know… and that’s precisely why it’s exciting to watch races unfold. It always amazes me how sports are not just physical. Passion, drive, and perseverance can really impact performance.


Although we can’t change our DNA, we do have the ability to control our lifestyle, leading to epigenetic changes that can influence us both positively and negatively. We already know that exercise is important for health, but now we are learning that exercise might benefit us even further. There are still a lot of unknowns in the field of epigenetics. Scientists are at the tip of the iceberg when it comes to understanding genetics and lifestyle. It does seem, however, that the more we learn, the more nurture or lifestyle seems to play in determining the characteristics of an individual. Lifestyle factors, such as diet and exercise, have a deeper role in health and fitness and may offer even further benefits at the cellular level. From a performance standpoint, exercise appears to induce epigenetic changes within skeletal muscle, improving energy metabolism. These changes are intensity dependent and occur in response to even a small bout of exercise. Further, it appears that elite athletes may be born with a set of genes that predisposes them to be great, but they become great because of their lifestyle. Passion, drive, and hard work are perhaps just as important to success as a natural-born ability. So the answer to the nature versus nurture debate is still out. It appears that both factors impact us and may be equally important in determining who we are.


  • Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl, Krook A, O’Gorman DJ, Zierath JR. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 2012;15(3):405-11.
  • Cloud J. Why genes aren’t destiny. TIME, Jan 6, 2010.
  • Epstein D. The sports gene: inside the science of extraordinary athletic performance. Penguin Group, 2013.
  • Eynon N, Ruiz JR, Oliveira J, Duarte JA, Birk R, Lucia A. Genes and elite athletes: a roadmap for future research. J Physiol 2011;589(13):3063-70.
  • National Cancer Center Research Institute. DNA Methylation. Accessed online: http://www.ncc.go.jp/en/nccri/divisions/14carc/14carc01_1.html
  • Ronn T, Volkov P, Davgardh C, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Nitert MD, Eriksson KF, Jones HA, Groop L, Ling C. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLOS Genetics 2013;9(6):1-16.
  • Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C, Gomez-Cabrera MC, Pallardo FV, Lippi G. Physical exercise as an epigenetic modulator: eustress, the “positive stress” as an effector of gene expression. J Stren Cond Res 2012;26(12):3469-72
  • Thune I, Brenn T, Lund E, Gaard M. Physical activity and the risk of breast cancer. New Eng J Med 1997;336(18): 1269-75.
  • Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, Vishwanatha JK, Morabia A, Santella RM. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics 2011;6(3):293-9.
Stephanie Howe

, a coach and nutrition consultant at REP Lab in Bend, Oregon, started competing as a nordic skier and migrated to running in college. Stephanie now balances her schedule competing as an elite runner for The North Face, working at REP Lab and teaching at Oregon State University - Cascades in their Exercise Physiology program. You can learn more about Stephanie at REPoregon.com.

There are 39 comments

  1. Richard

    Good stuff. In addition, recent research has shown that it's not only what we do and eat that affects gene expression, but also what we think! "As a man thinketh, so is he" is not just a spiritual saying, it's fact. It has been conclusively shown that neurons (brain cells) and their connections are changed (remodeled) by thought alone. The "Power of Positive Thinking" is real.

  2. Dean G

    "Every little bit counts" — is a wonderful thing to remember, in a world where it often seems 'silly' to get outside for 'only a 30 minute run or walk'.

  3. Andy Snyder

    Nice article Stephanie.

    I believe that most elite athletes do have some genetic disposition that allows them to end up at the top. However, they get there because of the nurture aspect, not mearly because they were "born that way". Which is exactly what you summarize in your last paragraph.

    However, I don't agree with the following: "Recent studies have shown that not only do epigenetics influence your genes, but also can be passed down from one generation to the next. For example, eating too much may cause obesity but can also predispose your kids to be obese, even before they are conceived." This falls back to what the medical community was saying 25 years ago and telling obese people that they had a "fat gene" and that was the cause of their obesity. We didn't evolve over thousands of years and then suddenly in the 1980's develop a "fat gene". There's no scientific truth to that at all. The reason people become obese is becuase of lifestyle choices. Their kids then become obese because they are following in their parents footsteps and choosing the same type of lifestyle choices. It's not because they are genetically predisposed to becoming obese.

    1. Lance

      Andy, there are plenty of studies showing the presence of genetic influences and a predisposition to obesity based on genetic factors, one specific example being the FTO gene (J Clin Invest. 2013, 123(8), 3539–3551; Science, 2007, 316(5826) 889-894). The denial of a genetic influence on habits and lifestyles can be easily confused as something that is purely the choice of the patient, but this is simply not true.

      1. Andy Snyder

        Lance, I believe the FTO gene is mearly a by-product of a person's lifestyle. Just as Stephanie points out that exercise can alter a gene, then a sedentary lifestyle can have an opposite affect on a gene. If they study an obese person then it makes sense that their genes have been altered, and hence they can label the FTO gene.

        "The denial of a genetic influence on habits and lifestyles can be easily confused as something that is purely the choice of the patient, but this is simply not true". I guess we'll just have to agree to disagree on your comment as I believe the opposite to be true (when it comes to obesity). I've worked in the medical field a long time and there is nothing that will convince me that people are genetically predisosed to becoming obese. If that were the case, then why the sudden epidemic of obesity in the U.S.? All of the obese patients that I've worked with over the years were obese by lifestyle choices, not genetics.

        The main point of Stephanie's article was that exercise can have positive effects on the body and that is what we need to take away from it. I was simply pointing out one aspect that I didn't agree with, that's all.

        1. Matt

          How about a compromise. I agree that there is no "fat gene", this is more a publicity thing to promote a finding or gain readers for a journal. Most genes underlying obesity – actually versions of a gene known as an allele – only explain a small percentage of the variation in obesity. Mutations with large effect are rare, and most things we observe are made up of many many genes with small effect (degenerative diseases are the exception).

          So there is no one "fat gene" – but there are a bunch that make people more predisposed to becoming obese under certain conditions, i.e. their lifestyle. One reason for the modern increase in obesity is probably that diets have become more carbohydrate rich, and there are many genetic factors that make some people more likely to deposit fat under a rich carb diet. Genetics meets environment.

        2. Lance

          "I’ve worked in the medical field a long time and there is nothing that will convince me that people are genetically predisosed to becoming obese." If you don't objectively look at the data, then this is an easy position to adopt. Matt said it well: the genetic predispositions are clear and obvious as supported by any of the many studies on different genes (variations in alleles). Will those alleles make someone obese? Of course not, I never said that. But if someone with a predisposition and someone with the "normal" allele eat the same diet of typical American food, the former will have a much greater chance to become obese than the latter, that is the argument here. And fortunately due to exercise, a healthy diet, and the epigenetic influences mentioned above there is still a great chance both of these examples can live long and healthy lives!

          1. Andy Snyder

            Matt, good response and well taken. Same for your reponse Lance. I'll agree that certain people can have a genetic predisposition and, given the chance, they could end up on one end of the scale or the other. I just get frustrated at times because I have seen people use their genetic make up as a cop-out so that they just accept the way that they are instead of trying to make positive changes in their life. Maybe instead of using "lifestyle choices" in my response I should have used environmental impact plus lifestyle choices. Ben makes an excellent point below in that many obese people are also depressed and/or have been abused, etc. If those people have the genetic predisposition, then yes, they will have a much more difficult time overcomming their situation.

            I think that we can all agree that this topic is very complex and there are many variables that play a roll in how we all end up in the end.

    2. Stephanie


      Good point. This study wasn't pointing out that there is a 'fat gene', but rather than if you overeat and fail to exercise it can change things like metabolism, fat storage, etc that can be passed down from generation to generation. In fact, being overweight in pregnancy can greatly increase the risk for the offspring to have type II diabetes and be overweight. It's scary but true!

      1. Andy Snyder

        Hi Stephanie,

        I agree with the changes that can happen with pregnancy, but again, those changes take place because of lifestyle choices that then change that person's genetic profile.

        Good topic. I like the discussion. :)

        1. Stephanie

          Except it's been shown that they can! Check out some of the resources I listed or search for articles on maternal epigenetics on pubmed. There is not a whole lot of published papers yet, but you will find a handful explaining how these genes can be passed on!

        2. Ben Nephew

          The point is that offspring will be affected, and I don't think you can have a lifestyle choice in utero. Using your logic, we could call depression and addiction lifestyle choices. Even if we did that, choices are behaviors, and behaviors are mediated by genetic and epigenetic changes. Obesity is often associated with depression. Kids that are abused are more like to suffer from depression the rest of their lives due to long term changes in how they respond to stressful and rewarding stimuli. The way they make choices is different than those who are not abused.

    3. Mike Hinterberg

      I found Stephanie's article to be scientifically accurate with the current understanding of perinatal epigenetic influences on obesity, and perhaps it's important to distinguish the media/popular culture understanding of the medical community vs. medical research, which has never suggested a compelling case for a single gene "causing" obesity, nor even a set of genes. In fact, the net result of scientific research is even more evidence that obesity is a complex interplay of genes and environment.

      The important and interesting conclusions about epigenetics are the fact that epigenetic changes are heritable *within a generation.* Strict gene-sequence dogma suggested that only mutations would affect such heritable traits — and remember, even gene mutations are at some level caused environmentally — and then be influenced by environment. Previously, it was thought that "sequence was king" and that only sequence was inherited, but now we see that epigenetic modification is also important in influencing phenotype.

      "Predisposition" does not mean "guarantee," but rather than being fatalistic about predeterminism, I think it's empowering and important to understand that perinatal and even preconception health can have a profound impact on children. The strong message for parents, for many reasons, is to strive to be in the best shape of their lives!

    4. lstomsl

      Did "lifestyle choices" suddenly change in the 1980s to produce the obesity epidemic or was it the sudden availability of highly processed food that happened at the same time? A combination of both?

  4. Lance

    Eero Mantyranta did later admit to taking not-yet banned growth hormones during his sorts career. I think the useful analogy to running here is to examine the preponderance of east-African runners at the top of most professional running events since 1960, although most studies seem to indicate a social/cultural/anatomical/biomechanical explanation for that. In the end your genetic ability to run can be highly dependent on your own circumstances as you said, and not just a predisposition. This is why it hurts so much to hear people say, "Oh, I can't run, I'm not a runner…" Get out there and give it a try, you can do it! The benefits will be great! Well written article, I enjoyed it a lot!

    1. RunDC

      Cool. This is a great explanation for how people like Dennis Kimetto can exist.

      After running Chicago in 2:03:45 (a course record) the Kenyan told an interviewer that "before 2010 I was concentrating on farming and had never run before."

      He also, apparently, has never run a track race in his life.

      1. Lance

        He ran prior to starting his running career. Running (since 2010) as it was said through the translator is considered training and racing in a professional sense, not any kind of running period like you are insinuating.

  5. Anonymous

    Really interesting stuff, and it tends to support what many of us, I suspect, are coming to on our own in a sort of anecdotal, if not scientific, way…are there any "mainstream" books out there on any of this, you know, something written for the lay person?


    JV in SD

    1. Stephanie

      Hi! The book I referenced: The sports gene: inside the science of extraordinary athletic performance. by David Epstein is a GREAT read for the lay person. It explains these complex topics in a way that makes them easy to understand. Check it out!

  6. max

    "On today's episode of Do-What-Your-Body-Was-Made-For"…

    I'm excited that previously isolated fields are finally venturing into understanding the interconnectivity of it all.

  7. Matt

    Interesting article. I think it is worth pointing out that exercise and lifestyle choice can impact on patterns of gene expression without the need to invoke epigenetics. As someone who studies the genetic basis of things such as ageing and disease – I tend to think of epigenetic more within the context of how the gene expression can be modified in a way that is passed on to the next generation.

    Put it another way, methylation is one of many ways that environmental conditions can which genes are turned on and off, but it is one that can persist across generations. Hope that makes sense. By the way, a nice popular science book on epigenetics is The Epigenetics Revolution by Nessa Carey.

    The genetics of sports performance is super interesting and it's great to see articles such as these communicate new findings. My own 23andme genetic screen suggests I am unlikely sprinter – but maybe on this website that is not such a bad thing.


  8. Andy

    Very interesting and scholarly read. I am no expert on epigenetics, but as a behavioral scientist I am aware of excellent studies showing that genes control the extent to which environment (i.e., "nurture", training, etc) influences our behavior. Thus, to what extent training will improve our running is controlled, at least in part, by genes. Talk about nature-nurture interactions!

    As for methylation, I doubt that no matter how much I run at this point there will be much methylation. I guess a little post-run "ethylation" will have to do :-)

  9. Ben Nephew

    While the effects of typical training may not be long term, I wonder about the impact of extremely adverse ultra races? Environmental exposures can induce long term changes in gene expression, and not just when experienced in the perinatal or early life periods.

  10. Andrea

    What a fascinating article! Thanks for sharing. I remember learning a little about DNA methylation years ago in college but did not know about the new research on methylation and gene expression. It's nice to know that we are doing ourselves a favor in our crazy sport/passion!

  11. Amanda

    Thanks, Stephanie! As a trail running biochemist, I really enjoyed this- popular science meets molecular bio/biochem meets ultra running. And the discussion board is fantastic!

  12. Albert Liau

    Excellent article, Stephanie. Great job in writing an easy-to-read article laden with scientific facts and references. As one psychologist, Donald Hebb once said, behavior is 100% biology (nature) and 100% psychology (nurture).

  13. Stephanie

    Hi Amanda! Thanks for the comment. I'm glad you enjoyed the article! It's always fun to merge science with a "real world" application.

  14. Rase

    Awesome and fun to read. I have taken upper division genetics classes in college, I still don't know a thing but I can relate to the fact that epigenetics probably was a tough one to tackle! haha. Thanks for writing this up and sharing!

Post Your Thoughts